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581 83 Linköping, Sweden

Abstract. In the materials science domain the data-driven science paradigm
has become the focus since the beginning of the 2000s. A large number
of research groups and communities are building and developing data-
driven workflows. However, much of the data and knowledge is stored
in different heterogeneous data sources maintained by different groups.
This leads to a reduced availability of the data and poor interoperabil-
ity between systems in this domain. Ontology-based techniques are an
important way to reduce these problems and a number of efforts have
started. In this paper we investigate efforts in the materials science, and
in particular in the nanotechnology domain, and show how such ontolo-
gies developed by domain experts, can be improved. We use a phrase-
based topic model approach and formal topical concept analysis on un-
structured text in this domain to suggest additional concepts and axioms
for the ontology that should be validated by a domain expert. We de-
scribe the techniques and show the usefulness of the approach through
an experiment where we extend two nanotechnology ontologies using ap-
proximately 600 titles and abstracts.
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1 Introduction

From the beginning of the 2000s materials science has shifted towards its fourth
paradigm, (big) data-driven science (Agrawal & Choudhary 2016). More and
more researchers in materials science have realized that data-driven techniques
could accelerate the discovery and design of materials. Therefore, a large num-
ber of research groups and communities have developed data-driven workflows
including data repositories (for an overview see (Lambrix et al. 2019)) and
data analytics tools for particular purposes. As data-driven techniques become
widely used, big data challenges regarding volume, variety, variability and ve-
racity (Lambrix et al. 2019) and challenges in reproducing, sharing, and inte-
grating data (Kalidindi & De Graef 2015, Agrawal & Choudhary 2016, Tropsha
et al. 2017, Karcher et al. 2018, Rumble et al. 2019) are growing at the same
time.

These challenges also occurred in other fields. For instance, in (Lambrix 2005)
the problems of locating, retrieving and integrating data in the biomedical field
were addressed. These problems relate to the more recently introduced FAIR
principles that aim to support machines to automatically find and use data,
and individuals to reuse the data (Wilkinson et al. 2016). The FAIR principles
state that data should be Findable, Accessible, Interoperable, and Reusable,
respectively. In different areas research is on the way to conform data manage-
ment to these principles, including in the materials science domain (Draxl &
Scheffler 2018). One of the recognized enablers for the principles are ontologies
and ontology-based techniques. Ontologies provide a shared standardized rep-
resentation of knowledge of a domain. By describing data using ontologies, the
data will be more findable. By using ontologies for representing the metadata,
the level of accessibility can be raised. By using the same terminology as defined
by ontologies, interoperability is enabled. Finally, as ontologies are shared and
standardized, reusability is supported.

Taking nanotechnology as an example, in (Tropsha et al. 2017) it is stated
that there exists a gap between data generation and shared data access. The
domain lacks standards for collecting and systematically representing nanoma-
terial properties. In (Karcher et al. 2018) stakeholder-identified technical and
operational challenges for the integration of data in the nanotechnology domain
are presented. The technical challenges mainly refer to (i) the use of different
data formats, (ii) the use of different vocabularies, (iii) the lack of unique iden-
tifiers, and (iv) the use of different data conceptualization methods. In terms of
operational challenges, they refer to (i) the fact that organizations have differ-
ent levels of data quality and completeness, and (ii) the lack of understandable
documentation. To solve these challenges, it is proposed that ontologies and
ontology-based techniques can play a significant role in the data-driven materi-
als science and enable reproduction, sharing and integration of data. This was,
for instance, the main outcome of a workshop on interoperability in materials
modelling organized by the European Materials Modelling Council (European
Materials Modelling Council 2017).
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Although in its infancy, some organizations and research groups have started
to develop ontologies and standards for the materials domain (Section 2.2), in-
cluding in the nanotechnology domain. However, developing ontologies is not
an easy task and often the resulting ontologies are not complete. In addition
to being problematic for the correct modelling of a domain, such incomplete
ontologies also influence the quality of semantically-enabled applications such
as ontology-based search and data integration. Incomplete ontologies when used
in semantically-enabled applications can lead to valid conclusions being missed.
For instance, in ontology-based search, queries are refined and expanded by mov-
ing up and down the hierarchy of concepts. Incomplete structure in ontologies
influences the quality of the search results. In experiments in the biomedical
field, an example was given where a search in PubMed (http://www.ncbi.
nlm.nih.gov/pubmed/), a large database with abstracts of research articles
in the biomedical field, using the MeSH (Medical Subject Headings) (http:
//www.nlm.nih.gov/mesh/) ontology would miss 55% of the documents if the
relation between the concepts Scleral Disease and Scleritis is missing (Liu &
Lambrix 2010).

In this paper, we present a novel method for extending existing ontologies
by detecting new concepts and relations in the concept hierarchy that should
be included in the ontologies. We do this by presenting a new approach, formal
topical concept analysis, that integrates a variant of topic modeling and formal
concept analysis. Further, we apply our method to two ontologies (NanoParticle
Ontology and eNanoMapper) in the materials science domain. The choice of the
use of ontologies in the nanotechnology domain is motivated by the fact that,
as we have shown before, there is an awareness of the need for ontologies to
deal with interoperability and reusability issues. Further, there are not so many
ontologies in materials science yet (see Section 2.2) and the chosen ontologies
are among the more mature ontologies in the field. Therefore, they represent the
most difficult case for extending ontologies.

The remainder of the paper is organized as follows. In Section 2 we describe
what ontologies are, efforts on ontologies in the materials domain as well as work
on extending ontologies. Section 3 describes our approach while Section 4 shows
and discusses the results of the application of our approach in the nanotechnology
domain. We show how NanoParticle Ontology and eNanoMapper were extended
and evaluate the usefulness of the approach. We also compare our results to the
results of an experiment with another popular system on the same data. Finally,
the paper concludes in Section 5.

2 Background

2.1 Ontologies

Intuitively, ontologies can be seen as defining the basic terms and relations of
a domain of interest, as well as the rules for combining these terms and rela-
tions. Ontologies are used for communication between people and organizations
by providing a common terminology over a domain. They provide the basis for
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interoperability between systems, and can be used as an index to a repository of
information as well as a query model and a navigation model for data sources.
They are often used as a basis for integration of data sources, thereby alleviat-
ing the variety and variability problems. The benefits of using ontologies include
reuse, sharing and portability of knowledge across platforms, and improved main-
tainability, documentation, maintenance, and reliability. Overall, ontologies lead
to a better understanding of a field and to more effective and efficient handling
of information in that field (e.g., (Stevens et al. 2000)).

Figure 1. Example from NanoParticle Ontology.

From a knowledge representation point of view, ontologies may contain four
components: (i) concepts that represent sets or classes of entities in a domain,
(ii) instances that represent the actual entities, (iii) relations, and (iv) axioms
that represent facts that are always true in the topic area of the ontology. Ax-
ioms can represent such things as domain restrictions, cardinality restrictions,
or disjointness restrictions. Ontologies can be classified according to which com-
ponents and the information regarding the components they contain. As an ex-
ample, Figure 1 represents a small piece of the NanoParticle Ontology (Thomas
et al. 2011) regarding ‘chemical entity’ and ‘quality’. Regarding chemical enti-
ties NanoParticle Ontology contains, for instance, the concepts chemical entity,
chemical substance, ion, particle, isotope and molecular entity. The black full ar-
rows represent axioms representing is-a relations, i.e. if A is a B, then all entities
that belong to concept A also belong to concept B. We also say then that A is
a sub-concept of B. In this example we have that chemical substance, particle,
ion, isotope and molecular entity are sub-concepts of chemical entity. There-
fore, all chemical substances, particles, ions, isotopes, and molecular entities are
also chemical entities. Further, all primary particles are particles, all nanoparti-
cles are primary particles, all polymeric nanoparticles are nanoparticles and all
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gelatin nanoparticles are polymeric nanoparticles. The is-a relation is transitive
such that, for instance, a gelatin nanoparticle is also a particle. Regarding differ-
ent kinds of qualities NanoParticle Ontology contains, for instance, the concepts
particle size, molecular weight, particle concentration, organic, inorganic, shape,
chemical composition, density, hydrodynamic size, mass, size, and electric charge.
Further, particles have qualities; this is represented by an axiom that states that
concepts particle and quality are connected to each other by the relation has
quality (green dashed arrows in Figure 1). Properties represented by relations
are inherited via the is-a hierarchy. Therefore, also the subconcepts of particles
are related to qualities.

In Figure 2 we show the part of NanoParticle Ontology that represents
particles using the ontology development system Protégé (https://protege.
stanford.edu/). On the left hand side the concepts and the is-a hierarchy are
shown. The is-a relations are represented by indentation. For instance, gelatin
nanoparticle (highlighted in Figure 2) is a sub-concept of polymeric nanoparticle
which in its turn is a sub-concept of nanoparticle. On the right-hand side of Fig-
ure 2 information related to the axioms are shown using a special notation reflect-
ing constructs in the representation language OWL (http://www.w3.org/TR/
owl-features/,http://www.w3.org/TR/owl2-overview/), a knowledge repre-
sentation language that is often used for representing ontologies and that is
based on description logics (Baader et al. 2010). For instance, we note that the
concept gelatin nanoparticle was defined to be equivalent to nanoparticle and
(has component part some gelatin). This means that every gelatin nanoparticle
is a nanoparticle that has a component that is gelatin, and vice versa, whenever
a nanoparticle has a component that is gelatin, then it is a gelatin nanopar-
ticle. Further, there is information about the types of qualities that gelatin
nanoparticles have (inherited from the particle concept). An advantage of us-
ing a description logics-based representation is that it allows for reasoning. In
the ontology it was defined that gelatin nanoparticle is equivalent to nanoparti-
cle and (has component part some gelatin) (as we just noted), that polymeric
nanoparticle is equivalent to nanoparticle and (has component part some poly-
mer), and that gelatin is a subconcept of protein which is a subconcept of biopoly-
mer which is in its turn a subconcept of polymer. Based on these axioms the
system can derive the additional information that a gelatin nanoparticle is a
polymeric nanoparticle, which is also shown on the right-hand side of Figure 2
(under ‘SubClass Of’). Figure 3 shows the actual OWL representation for the
concepts gelatin nanoparticle, polymeric nanoparticle and nanoparticle.

2.2 Ontologies in materials domain

Within the materials domain the use of semantic technologies is in its infancy
with the development of ontologies and standards. According to (Zhang, Zhao &
Wang 2015) domain ontologies have been used to organize materials knowledge
in a formal language, as a global conceptualization for materials information
integration (e.g. (Cheng et al. 2014)), for linked materials data publishing, for
inference support for discovering new materials and for semantic query support
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Figure 2. Example from NanoParticle Ontology opened in Protégé.

(e.g., (Zhang, Luo, Zhao & Zhang 2015, Zhang et al. 2017)). Most ontologies fo-
cus on specific sub-domains of the materials field (e.g., metals, ceramics, thermal
properties, nanotechnology) and have been developed with a specific use in mind
(e.g., search, data integration, discovery). Some examples of ontologies are the
Materials Ontology (Ashino 2010) for data exchange among thermal property
databases, PREMΛP ontology (Bhat et al. 2013) for steel mill products, Mat-
Onto ontology (Cheung et al. 2008) for oxygen ion conducting materials in the
fuel cell domain, and the FreeClassOWL ontology (Radinger et al. 2013) for the
construction and building materials domain. An ontology design pattern regard-
ing material transformations was proposed in (Vardeman II et al. 2017). Since
recently, the European Materials Modelling Council is developing the European
Materials Modelling Ontology (European Materials Modelling Council 2017).

In the sub-field of nanotechnology, the NanoParticle Ontology (Thomas et al.
2011) was created for understanding biological properties of nanomaterials, search-
ing for nanoparticle relevant data and designing nanoparticles. It builds on the
Basic Formal Ontology (BFO, http://basic-formal-ontology.org/) (Arp
et al. 2015) and Chemical Entities of Biological Interest Ontology (ChEBI) (de
Matos et al. 2010) to represent basic knowledge regarding physical, chemical
and functional features of nanotechnology used in cancer diagnosis and therapy.
The eNanoMapper ontology (Hastings et al. 2015) aims to integrate a number
of ontologies such as the NanoParticle Ontology for assessing risks related to the
use of nanomaterials.

Furthermore, standards for exporting data from databases and between tools
are being developed. These standards provide a way to exchange data between
databases and tools, even if the internal representations of the data in the
databases and tools are different. They are a prerequisite for efficient materials
data infrastructures that allow for the discovery of new materials (Austin 2016).
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Figure 3. Example from NanoParticle Ontology - OWL/XML Syntax Format.

In several cases the standards formalize the description of materials knowledge
and thereby create ontological knowledge. For instance, one effort is by the Eu-
ropean Committee for Standardization which organized workshops on standards
for materials engineering data of which the results are documented in (European
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Committee for Standardization 2010). Another recent effort is connected to the
European Centre of Excellence NOMAD (Ghiringhelli et al. 2016).

2.3 Extending ontologies from unstructured text

The ontology extension problem that we tackle deals mainly with concept dis-
covery and concept hierarchy derivation. These are also two of the tasks in the
problem of ontology learning (Buitelaar et al. 2005). Therefore, most of the re-
lated work comes from that area. For instance, a recent survey (Asim et al. 2018)
discusses 140 research papers. Different techniques can be used for concept and
relationship extraction. In this setting, new ontology elements are derived from
text using knowledge acquisition techniques.

Linguistic techniques use part-of-speech tagged corpora for extracting syn-
tactic structures that are analyzed regarding the words and the modifiers con-
tained in the structure. One kind of linguistic approach is based on linguis-
tics using lexico-syntactic patterns. The pioneering research conducted in this
line is in (Hearst 1992), which defines a set of patterns indicating is-a relation-
ships between words in the text. Other linguistic approaches may make use of,
for instance, compounding, the use of background and itemization, term co-
occurrence analysis or superstring prediction (e.g. (Wächter et al. 2006, Arnold
& Rahm 2013)).

Another paradigm is based on machine learning and statistical methods
which use the statistics of the underlying corpora, such as k-nearest neighbors
approach (Maedche et al. 2003), association rules (Maedche & Staab 2000),
bottom-up hierarchical clustering techniques (Zavitsanos et al. 2007), supervised
classification (Spiliopoulos et al. 2010) and formal concept analysis (Cimiano
et al. 2005). There are also some approaches that use topic models (Schaal
et al. 2005, Lin et al. 2012, Rani et al. 2017) but they focus on concept names
that are words, rather than phrases as in our approach.

Ontology evolution approaches (Hartung et al. 2011, Dos Reis et al. 2013)
allow for the study of changes in ontologies and using the change management
mechanisms to detect candidate missing relations. An approach that allows for
detection and user-guided completion of the is-a structure is given in (Ivanova
& Lambrix 2013, Lambrix et al. 2015) where completion is formalized as an
abduction problem and the RepOSE tool is presented.

3 Approach

Our approach for extending ontologies, shown in Figure 4, contains the following
steps. In the first step, creation of a phrase-based topic model, documents related
to the domain of interest are used to create topics. The phrases as well as the
topics are suggestions that a domain expert should validate or interpret and
relate to concepts in the ontology. In the second step the (possibly validated
and updated) topics are used in a formal topical concept analysis which returns
suggestions to the domain expert regarding relations between topics and thus
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concepts in the ontology. Both steps lead to the addition of new concepts and
(subsumption) axioms to the ontology. In the following subsections we describe
these steps.

Figure 4. Approach: The upper part of the Figure shows the creation of a phrase-based
topic model with as input unstructured text and as output phrases and topics. The
lower part shows the formal topical concept analysis with as input topics and as output
a topical concept lattice. In both parts a domain expert validates and interprets the
results.

3.1 Phrase-based Topic Model

In our first step we use the phrases-based topic model in the ToPMine system
(El-Kishky et al. 2014). Given a corpus of documents and the number of re-
quested topics, representations of latent topics in the documents are computed.
Essentially, topics can be seen as a probability distribution over words or phrases.
The ToPMine approach is purely data-driven, i.e., it does not require domain
knowledge or specific linguistic rule sets. This is important for our application
domain as there is a lack of annotated background knowledge. An important
property of the system is that it works on bags-of-phrases, rather than the tra-
ditional bag-of-words. This means that words occurring closer together have
more weight than words far away. Further, as we assume existing ontologies, it
is very likely that concepts with one-word names are already in the ontology and
we therefore focus on phrases.

The approach consists of two parts: phrase mining and topic modelling. In the
first part frequent contiguous phrases are mined, which consists of collecting ag-
gregate counts for all contiguous words satisfying a minimum support threshold.
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Then the documents are segmented based on the frequent phrases. Further, an
agglomerative phrase construction algorithm merges the frequent phrases guided
by a significance score. In the second part topics are generated using a variant of
Latent Dirichlet Allocation, called PhraseLDA, that deals with phrases, rather
than words.

3.2 Formal Topical Concept Analysis

In the second step we define a new variant of Formal Concept Analysis (e.g.,
(Ganter & Wille 2012)) and use this new variant on topics. These topics can
come directly from the previous step or can be a modified version of the topics
of the previous step, where non-relevant topics or phrases are removed.

We first define the notions of formal topical context, formal topical concept
and topical concept lattice. (Note that formal topical concepts should not be
confused with concepts in the ontologies.)

Definition 1. (Formal Topical Context) A formal topical context is a triple
(P, T, I) where P is a set phrases, T is a set topics, and I is a binary relation
between P and T (I ⊆ P × T ).

Definition 2. (Formal Topical Concept) (A,B) is a formal topical concept of
(P, T, I) iff A ⊆ P , B ⊆ T , A′ = B, B′ = A where A′ := {t ∈ T | ∀p ∈ A :
< p, t >∈ I} and B′ := {p ∈ P | ∀t ∈ B : < p, t >∈ I}. A is the extent and B is
the intent of (A,B).

Definition 3. (Topical Concept Lattice) Topical formal concepts can be or-
dered. We say that (A1, B1) ≤ (A2, B2) iff A1 ⊆ A2. The set Φ(P, T, I) of all
formal topical concepts of (P, T, I), with this order, is called the topical concept
lattice of (P, T, I).

As an example, in Figure 5(a) we show a matrix representing the occurrence
of phrases in topics in a topic model, the resulting formal topical concepts in
Figure 5(c) and the topical concept lattice in Figure 5(b). In the lattice a node
represents a formal topical concept (same numbering as in Figure 5(a)). For
a formal topical concept (A,B), its extent (phrases) is found by collecting all
phrases in its node as well as its descendants. The intent (topics) is found by
collecting all topics in its node as well as its ancestors.

3.3 Domain Expert Validation

As shown in Figure 4, a domain expert is involved in the different steps in our
approach to validate and interpret the results of the phrase-based topic model
and the formal topical concept analysis.

The domain expert validates or interprets all phrases that appear in all
topics. The outcome can be one of the following.
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Figure 5. Examples of (a) phrase occurrences in topics, (b) Formal Topical Concept
Lattice and (c) Formal Topical Concepts.

– (i) The phrase is a meaningful representation of a concept in the specific
domain and it is already in the ontology. For example, gold nanoparticle is
a specific concept within the nanotechnology domain and it is already in
the NanoParticle Ontology. We distinguish two cases: (1) a concept with the
same name or a name that is a synonym of the original form of the phrase
already exists in the ontology (EXIST) or (2) a concept with a name that is
a modified form of the phrase already exists in the ontology (EXIST-m).

– (ii) The phrase is a meaningful representation of a concept in the specific
domain but it is not in the ontology. For example, microcrystalline silicon is
a meaningful representation of a concept but such concept does not exist in
the ontology. We distinguish two cases: (1) a concept with the same name as
the original form of the phrase should be added into the ontology (ADD) or
(2) a concept with as name a modified form of the phrase should be added
into the ontology (ADD-m).

– (iii) No concept related to the phrase should be added to the ontology. This
can happen because the phrase does not make sense in the domain (No),
but also because it is a meaningful representation of a concept in a more
general domain (No-g). For example, electron transfer is a general concept
within the perspective in materials science, but should not necessarily be in
a nanotechnology ontology.

A second interaction with the domain expert occurs in the interpretation
of topics. The outcome can be one of the following.
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– (i) Using the representative phrases in a topic, the domain expert labels the
topic. Using this label as a phrase, we have the outcomes EXIST, EXIST-m,
ADD, ADD-m, No-g and No, as above. Furthermore, we add an outcome
Q (for query) when the label for the topic is too specific for adding to the
ontology, but could be defined using concepts in the ontologies and OWL
constructs.

– (ii) Using a subset of representative phrases in a topic, the domain expert
labels the subset. Using this label as a phrase, we have the outcomes EXIST,
EXIST-m, ADD, ADD-m, No-g, No, and Q as above. This can be done for
different subsets.

Finally, the domain expert interprets the lattice.

– (i) Given the relationships in the lattice, as well as the connections of the
topics and phrases to concepts in the ontology, new relationships between
ontology concepts can be identified.

4 Extending NanoParticle and eNanoMapper Ontologies

In the following subsections, we show the usefulness of our approach by extending
two ontologies in the nanotechnology domain.

4.1 Corpus and ontologies

The corpus that we use is based on reports on nanoparticles from the Nanoparti-
cle Information Library (http://nanoparticlelibrary.net). For each nanopar-
ticle report, we take the text in ‘Research Abstract’ as well as the abstracts (or
only the titles if there is no abstract) from the publications in ‘Related Publi-
cations’. The final corpus contains 117 abstracts from the ‘Research Abstract’
field in the reports and 510 abstracts (or titles) from publications. We have cho-
sen to only retrieve titles and abstracts rather than full texts. The title and
abstract cover the basic content of an article. For a research article in the ma-
terials science domain they will generally contain a summary of the problem,
experiments, simulations and computations. As the ontologies aim to represent
basic knowledge in the domain, these parts of a research article often contain
enough information for extraction of concepts. When using the full text, more
proposals for concepts may be generated, but many of those will not be relevant.
In related fields, it has been shown that the use of titles (and abstracts) may be
a reasonable approach (e.g., (Galke et al. 2017)).

The ontologies that we extend are the NanoParticle Ontology (Thomas et al.
2011) (1904 concepts and 81 relations) and the eNanoMapper ontology (Hastings
et al. 2015) (12,531 concepts and 4 relations). Both ontologies are available via
BioPortal (https://bioportal.bioontology.org/).
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4.2 Experiments Setup

In our experiments, we configure the phrases mining threshold with two values
(high and low), and the PhraseLDA with different numbers of requested topics
(20, 30 and 40). The other parameters of PhraseLDA are set as follows: the total
number of Gibbs sampling iterations over the entire data is 1000, the hyper-
parameters are α = 50/T and β = 0.01 where T is the number of topics. These
initial values for the hyper-parameters are justified in (Steyvers & Griffiths 2007).
Thus we have six experiments over the data.

After the interpretation of the phrases by the domain expert, for each setting,
all (rows regarding) phrases interpreted with No are removed from the phrase
occurrence matrix. The updated matrix (with all EXIST(-m), ADD(-m) and
No-g phrases) are used as input for the formal topical concept analysis and a
formal topical concept lattice is generated.

For the interpretation of the phrases, topics and lattice results a domain
expert (second author) worked together with two ontology engineering experts
(first and third author). In a first 2 hour session the three experts went through
the phrases of all topics for one of the settings (low mining threshold, 40 topics)
of the topic model approach. Each phrase was discussed regarding whether it was
relevant for a nanotechnology ontology, checked whether concepts with the same
or similar names existed in the NanoParticle Ontology, and a decision was made
regarding EXIST(-m)/ADD(-m)/No(-g) as well as which axioms may be needed
to add to the ontology. In addition to investigating the ontologies, in some cases
terms were checked via wikipedia or research articles. As a preparation for the
second session, the knowledge engineers prepared suggestions for the phrases for
the other settings, based on the interpretation results of the first session and
search in the two ontologies. During the second session (4 hours) the phrases for
all settings were interpreted and related to both ontologies. Further, the topics
for one setting were interpreted. In the third (2 hour) session the remaining
topics as well as the lattice results were interpreted.

4.3 Results and discussion of results

In Table 1 we show the results regarding the interpretation of the phrases. In
addition to the number of concepts in the EXISTS(-m), ADD(-m), and No(-g)
categories, we also show the precision. The precision of the system is the ratio of
the number of relevant proposed concepts to the number of proposed concepts.
We decided to define a relevant proposed concept as a proposed concept that the
domain expert recognizes as a relevant concept, whether it be in the ontology, or
more specific than concepts in the ontology, or could belong to a more general
ontology. Therefore, the relevant proposed concepts are the ones that do not
belong to the ‘No’ category. This conforms to what is relevant in the ontology
learning setting.

We note that some phrases may contribute to the addition of multiple con-
cepts and axioms. Furthermore, the low mining threshold settings generate the
most number of phrases (in total and per topic). Except for one ‘No’ phrase, all
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Table 1. Result of interpreting phrases. The first column defines the case using the
number of topics, low or high mining threshold, and ontology. The precision is trun-
cated.

ADD ADD-m EXIST EXIST-m No-g No precision
20, low, NanoParticle 32 4 26 19 16 9 0.91
20, low, eNanoMapper 29 3 24 25 14 12 0.88
30, low, NanoParticle 30 4 26 18 16 9 0.91
30, low, eNanoMapper 28 3 24 26 12 11 0.89
40, low, NanoParticle 32 4 26 15 16 10 0.90
40, low, eNanoMapper 29 3 24 22 14 12 0.88
20, high, NanoParticle 9 1 14 7 4 0 1.00
20, high, eNanoMapper 8 2 12 10 3 0 1.00
30, high, NanoParticle 8 2 14 8 0 1 0.96
30, high, eNanoMapper 7 1 12 10 0 1 0.96
40, high, NanoParticle 9 2 14 12 4 4 0.91
40, high, eNanoMapper 9 2 12 14 2 4 0.90

For the meanings of ADD(-m), EXIST(-m) and No(-g), see Section 3.3.
For ADD and ADD-m, a new concept is defined in the ontology and one or more subsumption
axioms are added.

phrases generated by any of the high mining threshold settings are also generated
by at least one (and usually all) low mining threshold settings. For the low min-
ing threshold settings there are only small differences regarding the phrases that
occur in topics. There are 29 phrases that are generated by all settings. Of these
do 13 exist in the ontologies and relate, among others, to kinds of nanotubes,
microscopy, spectroscopy, and various properties of nanoparticles. Furthermore,
7 exist in a modified form, e.g., temperature for low/high/room temperature
and core-shell nanoparticle for the phrase core shell. The remaining 9 should
be added to the ontologies in the same or modified form. These relate to prop-
erties (resolution, pore size, band gap, electrical conductivity, crystallinity), a
technique (vapor deposition) and nano-objects (mesoporous silica nanoparticle,
thin film). Reverse micelle-synthesized quantum dot leads to the creation of a
specific kind of quantum dots as well as a specific synthesis technique. Regard-
ing the phrases that are only found by low mining threshold settings, they relate
to different kinds of silicons, nanoparticles, properties and techniques, of which
many should be added to the ontologies. There are, however, also several phrases
that relate to more general concepts in the materials domain that should not
necessarily be added to an ontology in the nanotechnology domain. In all set-
tings, we find most EXIST(-m) cases, which shows that the phrases are relevant
with respect to the existing ontologies. Furthermore, we found many ADD(-m)
cases which lead to new concepts and axioms. There are also some phrases that
relate to more general concepts and some phrases that do not lead to anything
meaningful in the context of extending the ontology. From Table 2 we note that
the more topics the system generates, the lower the percentage of topics that
contribute to EXIST(-m) and ADD(-m) categories.
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Table 2. The number (and truncated percentage in parentheses) of topics that con-
tribute to extending the ontologies. The first column defines the case using the number
of topics, low or high mining threshold, and ontology.

contribute to ADD
and ADD-m

contribute to EXIST
and EXIST-m

contribute to No-g

20, low, NanoParticle 18 (90.0%) 16 (80.0%) 6 (30.0%)
20, low, eNanoMapper 18 (90.0%) 16 (80.0%) 5 (40.0%)
20, high, NanoParticle 11 (55.0%) 13 (65.0%) 3 (15.0%)
20, high, eNanoMapper 11 (55.0%) 13 (65.0%) 2 (10.0%)
30, low, NanoParticle 19 (63.0%) 19 (63.0%) 11 (36.6%)
30, low, eNanoMapper 18 (60.0%) 20 (66.6%) 11 (36.6%)
30, high, NanoParticle 10 (33.3%) 19 (63.3%) 3 (10.0%)
30, high, eNanoMapper 9 (30.0%) 20 (66.6%) 2 (6.6%)
40, low, NanoParticle 22 (55.0%) 21 (52.5%) 12 (30.0%)
40, low, eNanoMapper 21 (52.5%) 23 (57.5%) 9 (22.5%)
40, high, NanoParticle 13 (32.5%) 16 (40.0%) 4 (10.0%)
40, high, eNanoMapper 12 (30.0%) 18 (45.0%) 3 (7.5%)

In Table 3 we show the results regarding the interpretation of the topics.
We note that the high mining threshold settings generate the most concepts
to add to the ontologies. In each setting there are one or two concepts that
were not found during the interpretation of the phrases (e.g., high resolution
experiment, water soluble reverse micelle systems, core-shell semiconductors).
All EXIST(-m) concepts were also found during the interpretation of the phrases.
The No-g category consists of earlier found phrases or specializations of those.
Furthermore, many of the topics are very specific and it was decided they should
not be added to the ontology, but queries (or complex concepts) using concepts
in the ontologies and OWL constructs can be constructed. We also observe that
the results for the two ontologies are almost the same, which may be because the
topic labels are (much) more specific than the phrase labels and the ontologies
do not model concepts at the lowest levels of specificity.

In the final step we generated lattices for all settings. As an example, a part
of the lattice for the case of 40 requested topics with a low mining threshold is
shown in Figure 6. Nodes that contain one topic/one phrase and have as child
the bottom node and as parent the top node are not shown. These have been
dealt with in the phrase interpretation step and as there are no connections to
other nodes (except top and bottom), no additional information can be gained
for those nodes.

The lattices were used in the following ways. First, the domain expert labeled
the nodes based on the phrases connected to the nodes. These may be the extents
or subsets of the extents of topics. The results are given in Table 4. Some new
concepts were found that are more general than concepts related to topics (e.g.,
core-shell cdse nanoparticles), but in general, few additional information was
found.
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Table 3. Result of interpreting topics. The first column defines the case using the
number of topics, low or high mining threshold, and ontology. Note that some topics
may be empty and some topics may require several concepts. The values in parentheses
show the number of added concepts that were not found in the phrase interpretation
phase.

ADD ADD-m EXIST EXIST-m No-g Q No precision
20, low, both 3(1) 0 2 0 1 13 0 1.00
30, low, both 8(2) 0 4 0 1 13 0 1.00
40, low, both 16(1) 0 11 1 2 10 5 0.88
20, high, both 8(1) 0 3 2 0 7 0 1.00
30, high, both 3(2) 0 10 2 0 7 0 1.00
40, high, NanoParticle 10(2) 0 10 3 2 3 2 0.93
40, high, eNanoMapper 10(2) 0 9 4 2 3 2 0.93

For the meanings of ADD(-m), EXIST(-m), No(-g) and Q, see Section 3.3.
For ADD and ADD-m, a new concept is defined in the ontology and one or more subsumption
axioms are added.

Secondly, the domain expert labeled the nodes based on the phrases con-
nected to the nodes and their descendants. As a node contains less phrases than
all its ancestors, a labeling may lead to the definition of a new concept that
is a super-concept of the concepts related to the ancestor topics (and relevant
axioms). As, according to the topic interpretation step, many topics are very
specific, this approach may give a way to decide on the appropriate level of
specificity for concepts to add to the ontology. In our experiments, however, the
lattices were very flat and the nodes with empty intent contained only one phrase
and thus did not lead to additional concepts.

Thirdly, the domain expert used the lattice as a visualization tool to check
the original topic interpretation. According to the domain expert, the use of the
lattice provides significant help in interpreting the topics. As it groups phrases
that are in common between different topics and distinguishes phrases that are
specific for certain topics, the structure of complex concepts (based on other

Table 4. Result of interpreting lattice nodes. The first column defines the case using
the number of topics, low or high mining threshold, and ontology. The values in paren-
theses show the number of added concepts that were not found in the phrase or topic
interpretation phases.

ADD ADD-m EXIST EXIST-m No-g Q No precision
20, low, both 1(0) 0 1 0 2 0 0 1.00
30, low, NanoParticle 4(2) 0 3 0 1 0 0 1.00
30, low, eNanoMapper 3(2) 0 4 0 1 0 0 1.00
40, low, both 3(0) 0 1 0 0 0 0 1.00
20, high, both 0(0) 0 1 0 1 1 0 1.00
30, high, both 1(1) 0 1 0 0 0 0 1.00
40, high, both 0(0) 0 0 0 0 0 0 1.00

For the meanings of ADD(-m), EXIST(-m), No(-g) and Q, see Section 3.3.
For ADD a new concept is defined in the ontology and one or more subsumption axioms are added.
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Figure 6. Part of the lattice for the 40 topics and low mining threshold setting. Nodes
that contain one topic/one phrase and have as child the bottom node and as parent
the top node are not shown.

concepts) is clarified. It results in a better organization and visualization of
the topics and their underlying notions. For instance, for a topic with phrases
‘particle size’, ‘quantum dot’, and ‘gold nanoparticle’, the phrase ‘particle size’
was in common with another topic. By removing ‘particle size’ from the phrase
list of the topic, it was easier to see that the topic was a combination of ‘particle
size’ and a notion of ‘quantum dots of gold nanoparticles’.

4.4 General discussion

For the experiments we have currently used few resources, i.e. circa 600 abstracts
and less than 10 hours for each of the three experts. Even with these limited
resources our approach finds 35 and 32 new concepts for the NanoParticle Ontol-
ogy and the eNanoMapper ontology, respectively as shown in Table 5, as well as
42 and 37 new axioms, respectively, as shown in Table 6. In addition to the new
concepts and new axioms, also other concepts are influenced. Indeed, for a new
axiom A is-a B, the sub-concepts of A receive B and all its super-concepts as its
super-concepts (and thus inherit their properties), and all super-concepts of B
receive A and its sub-concepts as sub-concepts (and thus all instances of these
concepts are also instances of B and its super-concepts). In this experiment, 72
concepts from NanoParticle Ontology are influenced by the new axioms. There-
fore, the quality of semantically-enabled applications is improved whenever one
of the 35 new or 72 influenced concepts is used. For the eNanoMapper ontol-
ogy the number of influenced existing concepts by adding new axioms is 37.
In general, if domain and range are used for the definition of relations in the
ontologies, even more concepts would be influenced. Thus, adding these axioms
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improves the quality of the ontologies and the semantically-enabled applications
that use these ontologies. It is clear that the effort for extending the ontologies
is worth-while.

Table 5. New concepts for the NanoParticle and eNanoMapper ontologies.

Concepts NanoParticle eNanoMapper

amorphous silicon !

band gap !

Barium Titanate ! !

block copolymer ! !

copolymer ! !

polymer !

CdSe nanocrystal ! !

CdTe nanoparticle ! !

copper nanoparticle !

conductivity ! !

electrical ! !

gold nanorod ! !

growth mechanism ! !

resolution ! !

layer by layer growth ! !

liquid solid !

pressure !

MCM 41 ! !

mechanical property ! !

viscosity !

melt spin ! !

mesoporous silica nanoparticle ! !

mesoporous silica nanosphere ! !

microcrystalline silicon ! !

optical property !

polymorphous silicon ! !

pore size !

porous silicon ! !

quantum confinement ! !

reverse micelle-type quantum dot ! !

semiconductor nanocrystal ! !

nanocrystal ! !

silicon thin film ! !

thin film ! !

crystallinity ! !

thermal conductivity ! !

tunnel spectroscopy ! !

ZnO nanowire ! !
35 32

The current corpus is mainly related to the themes of Chemical synthesis,
Engine Emissions, Flame Combustion, and Furnace Emissions. A larger corpus
would allow us to find more concepts and axioms as well as extend the coverage,
i.e., larger parts of the ontologies could be extended.

Our results show that the approach generates many EXIST(-m) cases. This
provides a sanity check for our approach as it shows that existing concepts can
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Table 6. New axioms for the NanoParticle and eNanoMapper ontologies.

Axioms NanoParticle eNanoMapper

amorphous silicon is a silicon !

band gap is a quality !

Barium Titanate is an inorganic compound or molecule !

Barium Titanate is a chemical substance !

block copolymer is a copolymer ! !

copolymer is a polymer ! !

polymer is an organic material !

CdSe nanocrystal is a nanocrystal ! !

CdTe nanoparticle is a nanoparticle ! !

copper nanoparticle is a metal nanoparticle !

conductivity is an independent general individual quality !

conductivity is a quality !

electrical conductivity is a conductivity ! !

gold nanorod is a nanorod ! !

growth mechanism is a process ! !

resolution is an independent general individual quality !

resolution is a quality !

layer by layer growth is a mechanism process ! !

liquid solid is a liquid solid interface !

pressure is an independent general individual quality !

MCM 41 is a mesoporous silica nanoparticle ! !

mechanical property is a realizable entity !

mechanical property is a quality !

viscosity is a mechanical property ! !

melt spin is a technique ! !

mesoporous silica nanoparticle is a nanoparticle ! !

mesoporous silica nanosphere is a nanosphere ! !

microcrystalline silicon is a silicon !

microcrystalline silicon is a chemical substance !

nanotube array has part nanotube ! !

optical property is a property !

polymorphous silicon is a silicon !

polymorphous silicon is a chemical substance !

pore size is a nanoparticle property !

porous silicon is a silicon !

porous silicon is a chemical substance !

raman scatter is a synonym of raman spectroscopy ! !

quantum confinement ! !

reverse micelle-type quantum dot is a quantum dot ! !

semiconductor nanocrystal is a semiconductor and is a nanocrystal ! !

nanocrystal is a nano-object and is a crystal ! !

silicon thin film is a thin film ! !

thin film is a fiat material part and one-dimensional nano-object ! !

crystallinity is an independent general individual quality !

crystallinity is a quality !

transition metal is a synonym of transition element !

thermal conductivity is a conductivity ! !

tunnel spectroscopy is a spectroscopy ! !

scanning tunneling spectroscopy is same as tunnel spectroscopy ! !

chemical vapor disposition is a vapor disposition ! !

physical vapor disposition is a vapor disposition ! !

ZnO nanowire is a nanowire ! !
42 37
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be found. In a future system we may want to filter out suggestions by checking
the existence of the term or a similar term in the ontologies before showing
the domain expert. This may lead to less unnecessary validation work for the
domain expert as EXIST(-m) cases would be removed. However, this may also
lead to missing some new concepts as the terms used in different ontologies
may not always mean the same. For instance, in (Ivanova et al. 2012) it was
shown that ‘metabolism’ in MeSH has a different meaning than ‘metabolism’
in ToxOntology. Therefore, only using (approximate) string matching and using
synonyms may not be enough to filter out EXIST(-m) cases.

For the domain expert it was easier to interpret and label the topics for the
settings with high mining thresholds. As mentioned, the number of phrases for
topics for the low mining threshold settings is larger than for the high mining
threshold settings. Often the topics for the low mining thresholds contained too
many phrases to easily interpret the topic. In an extreme case, the domain expert
thought that a topic “looked like the subject of a particular research article”.

One issue that the domain expert noted was that it was not always easy to
decide which level of granularity to use during the interpretation. The question
is how specific or how general the interpretation could be and still make sense
for the ontology. Although our approach gives much flexibility in this sense, it
does give much responsibility to the domain expert and some way to automate
recommendations would be helpful. Another related issue is the fact that we
found several concepts that were too general for the nanotechnology domain,
but that are still relevant. In this case we did not add these to the ontology, but
one may reflect on how to deal with this issue, e.g., by importing or linking to
other ontologies.

In this experiment we did not find cases where the lattice was in conflict
with the ontologies. In our method the domain expert is involved in interpreting
the lattice. Therefore, if there would be a conflict between the domain expert’s
validation and the ontologies, there are two possibilities. First, it is possible that
the domain expert made a mistake, and by observing the conflict could rectify
the mistake. Second, there may be a mistake in the ontologies. By observing the
conflict, we now have an opportunity for debugging the ontology using specialized
tools (e.g., (Lambrix 2019)).

4.5 Comparison to Other Approaches

Literature As mentioned before, we are mainly dealing with concept discovery
and concept hierarchy derivations. As these are also two tasks in ontology learn-
ing, we find most related work in that area. While we addressed different methods
in Section 2.3, in this section we address systems. A number of ontology learn-
ing systems generate concepts. Examples are ASIUM (Faure & Poibeau 2000),
CRCTOL (Jiang & Tan 2010), OntoGain (Drymonas et al. 2010), OntoLearn
(Navigli et al. 2004) and Text2Onto (Cimiano & Völker 2005). ASIUM ap-
plies linguistics-based sentence parsing, syntactic structure analysis, and sub-
categorization frames to return concepts. CRCTOL implements both linguistics-
based methods and relevance analysis. OntoGain extracts concepts by using
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linguistics-based part-of-speech tagging, shallow parsing, and relevance analysis.
OntoLearn generates concepts based on the concepts and glossary from Word-
Net. Finally, Text2Onto uses statistics-based co-occurrence analysis. We show
the performance of these five systems in Table 7 according to (Wong et al. 2012).

Table 7. Performance of ontology learning systems in different domains (Wong et al.
2012). (Precision is truncated.)

System Domain Precision
ASIUM French journal Le Monde 0.86
CRCTOL Patterns of Global Terrorism 0.92

OntoGain
Computer Science corpus 0.86
Medical corpus 0.89

OntoLearn Tourism 0.85

Text2Onto
Text from the paper (Navigli & Velardi 2004) 0.61
Patterns of Global Terrorism 0.74

Experiment with Text2Onto To compare our approach with another system,
we have chosen to experiment with Text2Onto (Cimiano & Völker 2005). It was
the only system that we found that we could download and install. However, it
is one of the most popular and well-known ontology learning systems and there-
fore a good choice. Text2Onto is an ontology learning system based on mining
textual resources. For extracting concepts from the textual resource, Text2Onto
implements four algorithms which are entropy-based, C-value/NC-value-based,
relative term frequency-based, and term frequency-based and inverted document
frequency (TF-IDF)-based respectively. As shown above, it performed well in
different domains.

In this experiment, we use Text2Onto on the same corpus as in the exper-
iment for our approach. We split the corpus into segments as Text2Onto uses
too much memory when applied on the whole corpus. We apply Text2Onto
with default settings for its four algorithms on our corpus. For each of the set-
tings, Text2Onto returns thousands of candidates ranked based on relevance.
We apply the same domain expert validation as in our method in terms of
interpreting phrases presented in Section 3.3. Instead of using the complete
ranked lists of thousands of proposed concepts, we decided to investigate the
results of the sub-lists containing the 100, 200, 300 and 400 top elements in
the lists, respectively. The results are shown in Table 8. The entropy-based and
C-Value/NC-Value-based methods return exactly the same results. For the rel-
ative term frequency-based method the 160 highest ranked proposed concepts
are the same as the 160 highest ranked proposed concepts for the entropy-based
and C-Value/NC-Value-based methods. The precision for the entropy-based and
C-Value/NC-Value-based methods is the highest for each fixed number of pro-
posed concepts, closely followed by the relative term frequency-based method.
The TF-IDF-based method has the lowest precision. However, the TF-IDF-based



22 H. Li et al.

method finds the largest number of relevant new concepts (ADD(-m)). Further,
the precision decreases and the number of relevant new concepts increases for
all algorithms, when we take larger sub-lists of top elements.

In Table 9, we show the results for Text2Onto when all algorithms are used
together for the different sub-lists of top elements and compare it to our method.
In Table 10 we show all the new concepts found by our method and Text2Onto
for NanoParticle Ontology. 14 concepts were found by both methods. Further,
our method found 21 new concepts that were not found by Text2Onto, while
Text2Onto found 28 new concepts that were not found by our method. The two
methods seem therefore to be complementary.

Table 8. The results of Text2Onto with different algorithms and different number of
returned candidates. (Precision is truncated.)

# of elements Algorithm ADD ADD-m EXIST EXIST-m No-g No precision

100

Entropy 5 0 39 19 4 33 0.67
C-value/NC-value 5 0 39 19 4 33 0.67
Relative term frequency 5 0 39 20 4 32 0.68
TF-IDF 17 0 22 12 6 43 0.57

200

Entropy 7 1 63 43 8 79 0.60
C-value/NC-value 7 1 63 43 7 79 0.60
Relative term frequency 7 1 63 42 8 79 0.60
TF-IDF 24 1 38 19 19 99 0.50

300

Entropy 12 1 80 52 16 139 0.53
C-value/NC-value 12 1 80 52 16 139 0.53
Relative term frequency 13 1 78 52 16 140 0.53
TF-IDF 28 1 58 36 29 148 0.50

400

Entropy 18 1 98 62 20 199 0.50
C-value/NC-value 18 1 98 62 20 199 0.50
Relative term frequency 19 1 100 61 20 199 0.50
TF-IDF 36 1 70 44 38 211 0.47

Table 9. Results for Text2Onto using all algorithms per setting and our method for
extending NanoParticle Ontology. (Precision is truncated.)

ADD ADD-m EXIST EXIST-m No-g No precision
Text2Onto-100 20 0 51 27 11 71 0.60
Text2Onto-200 29 1 84 55 26 164 0.54
Text2Onto-300 39 1 118 78 44 266 0.51
Text2Onto-400 41 1 120 73 47 313 0.47
Our Method 32 3 25 18 14 22 0.80



Extending Ontologies in the Materials Science Domain 23

Table 10. New concepts found by our method and Text2Onto for the NanoParticle
Ontology.

Concepts Our method Text2Onto

acid group !

activation energy !

amorphous silicon !

band gap ! !

Barium Titanate ! !

Barium Titante nanowire !

block copolymer ! !

boron nanowire !

catalyst !

cluster !

copolymer ! !

crystallite !

crystallinity !

CdSe nanocrystal !

CdTe nanoparticle !

copper nanoparticle ! !

conductivity ! !

diblock copolymer !

electrical conductivity !

esterification !

ethylene oxide !

gold nanorod ! !

growth mechanism ! !

intensity !

resolution !

layer by layer growth !

liquid solid !

pressure !

MCM 41 !

mechanical property !

melting !

melt spin !

mesoporous silica nanoparticle !

mesoporous silica nanosphere !

microcrystalline silicon ! !

nano colloid !

nano composite !

nanocrystal ! !

nano crystalline silicon particle !

nanogrid !

nano ribbon !

nanotube array ! !

nanowire array !

oxidation !

photo activity !

polyelectrolyte !

polymorphous silicon !

pore size ! !

porous silicon !

pressure !

quantum confinement ! !

reverse micelle-type quantum dot !

semiconductor nanocrystal ! !

silicon thin film !

silica nanosphere !

silicon nanowire !

silicon nanowire array !

superlattice nanowire !

thin film !

titanium nanotube !

thermal conductivity !

tunnel spectroscopy !

ZnO nanowire !
35 42
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5 Conclusions and Future Work

In this paper we have used a phrase-based topic model approach and introduced
a formal topical concept analysis for extending ontologies. A domain expert in-
terprets the results which are phrases, topics and a lattice. This leads to the
confirmation of ontological concepts (EXIST(-m)) or to the addition of new
concepts and axioms (ADD(-m)). The latter is the actual extension of the on-
tologies. Also, concepts from more general or other domains may be found, as
well as very specific concepts in the domain that need not be added to the ontol-
ogy. We have shown the usefulness of the approach by extending two ontologies
in the nanotechnology domain using approximately 600 abstracts.

In the future we will investigate how to help the domain expert dealing
with the granularity issue. In particular, the topical concept lattice explored in
this work appears to help refining topics into classifiers of content that are more
general and meaningful in the domain. This may be a useful step forward towards
a higher level of automation in the process of extracting ontology information
out of unstructured text. Furthermore, we will investigate the scalability of our
approach by experimenting with more documents. Another possible direction is
to investigate synergy possibilities between the topics and the ontology concepts,
e.g., by using the ontologies to generate the corpora, or by iterating between topic
generation and interpretation.
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